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Everyone thinks performance Everyone thinks performance 
has to do with resourceshas to do with resources

● Most programmers think if a program runs too 
slow, we should throw CPU at it, or  memory or 
disk...

● But what about program that has all the  CPU, 
memory  and  disk  in  the world, but still stub-
bornly refuses to deliver more than ten transac-
tions per second?

● Should we perhaps find the bottleneck instead?



  

But it doesn'tBut it doesn't

● Resources are easy to measure, but customers 
don't care.

● Customers care about guaranteed low response 
times and  lots of  transactions per second, all at 
a low price.

● We need to measure performance first, then 
diagnose, and only if we have a resource prob-
lem throw resources at it

● This is the old story of looking under the bright 
streetlight for the ring lost in the shadowy 
garden.



  

This talk is aboutThis talk is about

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance



  

What is Performance?What is Performance?

● Response to a load, in TPS or bytes/second
● Response in reasonable time.

● Latency
● Response time

● What's “reasonable” mean?
● 1/10 second is fast
● One second is not fast
● Ten seconds is bad
● Thirty is very bad



  

Why don't we measure it?Why don't we measure it?

● It's hard
● Or, optionally, brutally expensive

● Vendors could report it
● They used to in the mainframe days
● But they got screwed when they did

● So we make do with resources
● And often we luck out, when there is a CPU or 

memory bottleneck



  

But things have changedBut things have changed

● Many applications use TCP/IP
● There are lots of packet capture tools to use
● There are also free benchmark tools (JMeter)



  

The Laws of PerformanceThe Laws of Performance

● You may remember 
these diagrams from 
a textbook

● The operational laws 
dictate the shape of 
the throughput and 
response time curves

● They're only high-
school algebra, but 
they led to queuing 
theory

Load (N)

Transactions (X)

Response Time (R)

Load (N)

N*



  

The Queue (no theory involved)The Queue (no theory involved)

● N users
● N requests/second
● S sec. service time 
● W sec. Wait time
● R sec . response time
● D sec .demand
● Z  sec. think time 

(hidden)
yields
● X 

transactions/second



  

The Throughput CurveThe Throughput Curve

● The first curve is the 
upper bound on  
throughput (X),

● It rises with load until 
the program reaches 
100% utilization and 
then levels off.

● Measured curves 
don't actually have 
sharp corners.



  

The Throughput Curve IIThe Throughput Curve II

● If we measure the 
service time, S we 
can use the...

● Utilization law, 
    U = X . S 
    where U = B/T

● Consider the case 
where S = 0.10 sec.



  

The Throughput Curve IIIThe Throughput Curve III

● If S = 0.10, 10 trans-
actions will fit in one 
second

● 10 TPS is all we'll get

● If S = 0.05, 20 TPS is 
possible

● And 10 TPS is only 
50%



  

The Throughput Curve, IVThe Throughput Curve, IV

● You can't get utilization above 100%, because 
then 1/10 if a second would have to go into a 
second more than ten times. 

● This is the reason that the throughput curve isn't 
a straight line to infinity: it always rises with 
increasing load, but then levels off at 100% util-
ization.



  

Calculating 100%Calculating 100%

● We can compute the load that yields 100% util-
ization

● The user load at 100% utilization
● Is called  N*
● is equal to 1/S

● We computed it by setting S to a tenth of a 
second, U to 1 and solving the utilization-law 
equation for X.



  

The Throughput Curve VThe Throughput Curve V

● Why doesn't it have 
square corners? 

● Initially requests  arrive 
independently, and don't 
interfere. 

● As we get closer and 
closer to 100% utiliza-
tion, there's more and 
more likelihood that two 
will be requested at the 
same time, and the 
second will have to wait.



  

Queue BuildupQueue Buildup

● Past 100% utilization, requests have to wait. In 
our example, the 11th request has to wait for the 
other 10 to complete.

● The queue length is computed from
● Little's Law
    Q = X . R

● In our example, a load of 50 would yield a 
queue length of 50/10 = 5, and the average Re-
sponse time would be (40*0.1 + 0.1) = 4.1 
seconds



  

Queue Buildup IIQueue Buildup II

● In the queuing circuit 
in Figure 2, the queue 
is represented by the 
sequence of boxes to 
the left of S. 

● The queue delay or 
wait time is W, and 
the total response 
time under load is R, 
the sum of W and the 
service time S.



  

Queueing and Response TimeQueueing and Response Time

Double-click to add graphics

● Response time is the 
second curve in Fig-
ure 1, which starts 
out fairly level and 
then rises as we ap-
proach and pass N*.

● The slowdown is 
from all the waiting 
in queue.



  

Response Time IIResponse Time II

Double-click to add graphics

● If we did a bench-
mark, the response 
time would 

● start off horizontal, just 
like our diagram's ini-
tial line 

● then start to drift up-
wards fairly quickly 
towards paralleling the 
second.



  

What Everyone Doesn't KnowWhat Everyone Doesn't Know

● Benchmarkers ``-
know'' response time 
grows gently and lin-
early because their 
benchmark from 0 to 
10 requests per 
second was relatively 
linear. 

● They never tried at 
20 requests/second!



  

This is This is A Very Bad ThingA Very Bad Thing

● Consider the two response times that we men-
tioned before, one second and ten. 

● The proper equation predicts we'll hit the ten 
second mark at 107 requests per second. 

● The bad/linear equation would estimate we 
wouldn't hit the ten-second mark until 280 re-
quests per second.

● Only the customers (YorkU.CA)will know the 
real performance is less than half what they 
were promised. They and their lawyers.



  

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance



  

Measuring PerformanceMeasuring Performance

● Many programs use TCP/IP, even locally
● These you can measure with a packet capture
● And there's a free benchmarking tool, Jmeter

● If it sends requests and receives responses, we 
can 

● measure the speed 
● predict both the curves



  

A Transaction Looks Like...A Transaction Looks Like...

● At t0, the request 
arrives

● At t1, the first byte of 
the response is sent

● At t2, the last byte is 
sent

● And we also record 
bytes transferred

Client Server
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We MeasureWe Measure

● Latency 
= t1 – t0

● Response Time  
= t2 – t0

● Transfer Time          
= t2 – t1

● Throughput
= bytes/(t2 – t1)

● Think Time
= t0 - t2

Client Server

t
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t
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t
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Response Time Looks LikeResponse Time Looks Like

● Response time is 
latency plus transfer 
time

● This is a good 
sample, by construc-
tion

● Note the average, 
which we'll use in a 
moment



  

Throughput (Bytes/Second)Throughput (Bytes/Second)

● The other kind of 
throughput

● Used for bulk trans-
fers, like ftp

● Variable, but it didn't 
mess up the response 
time



  

We Can ComputeWe Can Compute

● If and only if we're below 100% and there's no 
queue 

● We ensured that when we measured it
● The load was from wget with a sleep time

● TPS at 100% Utilization
● Computed as 1/ Response Time

● Actual as a % of Maximum
● Queue length

● By Little's Law, Q = XR
● And the the Slowdown due to Queuing



  

Transactions per Second (TPS)Transactions per Second (TPS)

● The expected line is 
1/Dmax, which we 
arranged to be equal 
to 1/R

● For one CPU, we're 
averaging 2.8/4.5 
= 62%



  

Queue LengthQueue Length

● This is from one of 
the Operational laws, 
Little's Law, Q=XR

● Waiting in queue is 
what makes programs 
slow



  

Working with the DataWorking with the Data

● Throughput (X) 
= min(1/Dmax, 
N/D+Z)

● Response Time (R) 
=max(D,Dmax-Z)

● Where D is demand
● N is users 
● Z is think time
● Dmax is the largest  

demand
● And D ≈ S•1

Load (N)

Transactions (X)

Response Time (R)

Load (N)

N*



  

The Results We just SawThe Results We just Saw

● A few slow transactions
● We're at about 60% of capacity
● The queue length was about .6, and spiked to 

approximately 5.5
● At 7 TPS per CPU, we hit 100% utilization 

● At 28 requests/second, R will be 3 seconds, which is 
not what we want, but sort of ok

● At 150 requests/second, R will be 15-30 seconds, 
which is bad



  

Why 3 and 30 Seconds?Why 3 and 30 Seconds?

● 1/10 second is fast
● One second is slow

● Three seconds is the upper bound for slow with a 
watch cursor or some other apologetic message

● If the response time grows to 30 second, 
humans think the program is more than slow: 
they'll think it's crashed!

● 30 seconds happens to be the cache time of human 
short-term memory



  

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance



  

Programming for PerformanceProgramming for Performance

● Make performance part of your design
● Build the performance test framework first.
● For example, the first day the code works...

● Consider this test-directed performance design

New 
Application

Dummy User
N=? Z=1

Dummy DB
S=0.1



  

Code and Tune for Code and Tune for 
“Good Enough”“Good Enough”

● If your target is 1/10 second, set your back end 
to almost that (maybe 0.09) , and see if the front 
end gets in the way

● As soon as it's good enough, STOP. Don't 
waste your efforts making a fast part faster

● The maximum TPS will be set by the slowest 
part, and will be 1/Dmax

● Where D = S * Visit count
● And visit count is number of calls to the slow 

part, such as a database or disk



  

TuningTuning

● Your tuning in the front end will mostly be 
looking at code-path length with your frame-
work and a profiler .

● The “HP” community is your resource here 
(High Performance as in Cray, not Hewlett-
Packard)

● One reference is "Performance Optimization of 
Numerically Intensive Codes” by Stefan Go-
decker (Society for Industrial and Applied 
Mathematics)



  

Then  Switch to tuning the SQLThen  Switch to tuning the SQL

● Build a script that submits the SQL and meas-
ure it.

● Now you can tune the queries and the database 
structure.

● See “Optimizing Oracle Performance” by Cory 
Millsap (O'Reilly, 2003)



  

If you Have MiddlewareIf you Have Middleware

● Arrange for it to communicate via sockets
● It probably does anyway

● Measure it's performance the same way
● If you can't:

● measure the front end and database
● What's left is the middleware



  

And And NowNow Look at Resources Look at Resources

● Find out how much CPU, memory and I/O each 
transaction takes at 1 TPS

● Now test up past 100% utilization, and see 
where it goes “haywire”

● Save that information for  properly sizing your 
production system

● If you under-size a production system, you will 
introduce an artificial bottleneck

● That's what most “tuners” find and fix (and yes, 
that includes me)



  

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance



  

Benchmarking for PerformanceBenchmarking for Performance

● In a TCP/IP world, benchmarking is easier
● First, check out JMeter

● And Loadrunner, if you're rich or already have it
● If not, try 

wget -O /dev/null -w Z/2 –random-wait
● Run for at least a minute at each load
● Don't just write down the results



  

Benchmarking Bugs Like to Benchmarking Bugs Like to 
HideHide

● Graph your results 
and look at the 
shapes

● Variations from the 
expected shapes 
identify the bugs

● Also, X >> 1/Dmax, 
your load generator's 
lying (a common er-
ror) 

Load (N)

Response Time (R)

N*



  

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance



  

Tuning for PerformanceTuning for Performance

● The first thing is have enough CPUs
● Not cpu speed, or % CPU, the number of CPUs

● Then look at latency versus transfer time
● If removing either of these will make you fast 

enough, then you know where to look next
● Latency is sensitive to CPU and network speeds

● But network bandwidth doesn't help here
● Transfer time is bandwidth-sensitive

● Look at disk bandwidth first
● Then at code length and code cost
● Then look for resource starvation



  

ConclusionsConclusions

● Start early
● Measure R
● Compute X at 100% utilization
● See how you're doing
and finally
● Draw the graphs



  

Graphs as a OO SpreadsheetGraphs as a OO Spreadsheet
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Upper bounds of throughput = min(1/Dmax, N/(D+Z))
Lower bounds of response time, R = max(D, N * Dmax – Z)

To compute the throughput and response time curves, we start by
measuring the response time at a very low load, so no queuing happens.

Response time, R,  at minimum load = 0.1

We now set the simulated users to issue 1 request per second, which
allows think time, Z, to be 1 – R = 0.9
This only works if R is less than one second, so that Z is positive.

The maximum throughput will occur at N*, the load where N = 1/R
N* = 10

After N*, no improvement in throughput will be possible,
and a queue will of work waiting to be processed will build up,
causing the response time to grow without bound.

Our estimate for D and Dmax is initially always 1 * R,  so the variables 
are now all known. D = 0.1

Dmax = 0.1
Z = 0.9


