You don't' Know ackeasout

Application Performance

Toronto Linux User Group, David Collier-Brown,
12 Sept 2006 Data Center Works



Everyone thinkSIpERoHnancE e
hasi te) dorWilthiESOULCES

i

® Most programmers think if a program runs too

slow, we should throw CPU at 1t, or memory or
disk...

® But what about program that has all the CPU,
memory and disk in the world, but still stub-
bornly refuses to deliver more than ten transac-
tions per second?

® Should we perhaps find the bottleneck instead?



But it deesnit

Resources are easy to measure, but customers
don't care.

® (Customers care about guaranteed low response
times and lots of transactions per second, all at
a low price.

® We need to measure performance first, then
diagnose, and only 1f we have a resource prob-
lem throw resources at it

® This 1s the old story of looking under the bright
streetlight for the ring lost in the shadowy
garden.



This talkiisrabout

What performance is, and why
Measuring performance
Programming for performance
Benchmarking for performance
Tuning for performance



What IS Performan

® Response to a load, in TPS or bytes/second

® Response 1n reasonable time.
® [atency
® Response time

® What's “reasonable” mean?
1/10 second 1s fast

One second 18 not fast

Ten seconds is bad

Tharty 1s very bad




Why donit \wermesd

® [t's hard
® Or, optionally, brutally expensive

® Vendors could report i1t
® They used to in the mainframe days
® But they got screwed when they did

® So we make do with resources
® And often we luck out, when there 1s a CPU or
memory bottleneck



But thingsthavechanges

® Many applications use TCP/IP
® There are lots of packet capture tools to use
® There are also free benchmark tools (JMeter)



™

2

The Laws offPerormance

® You may remember
these diagrams from
a textbook

® The operational laws
dictate the shape of
the throughput and

o response time curves
® They're only high-
school algebra, but

* they led to queuing
theory

Load (N)




The Queue (no theory invoIvet)

® N users
. |8]_‘_ ® N requests/second
O ® S sec. service time
) ® W sec. Wait time
—UO— ® R sec . response time
- : | ® D sec .demand
e m——— ® 7 sec. think time

(hidden)

yields

o X
transactions/second



™

£

The Throughputieui;

® The first curve 1s the
5 upper bound on
0T throughput (X),
i ® [t rises with load until
the program reaches

Thoroughpot {35

” ¥ T 100% utilization and
n* 1
Figure 3. Theoughput, expected and roeasured. then leves Off'
® Measured curves

don't actually have
sharp corners.



gy PR

TThe ThroughputiCunvell

® If we measure the
re——— service time, S we
| can use the...

| e Utilization law,
“' ” § U=X.S
! where U = B/T

Figure 3. Theoughput, expected and roeasured.

® (Consider the case
where S = 0.10 sec.



TThe TThroughputic

Figure 3. Theoughput, expected and roeasured.

e [fS=0.10, 10 trans-
actions will fit in one

second
® 10 TPS 1s all we'll get

o [fS=0.05,20 TPS 1s
possible

® And 10 TPS is only
50%



The ThroughputiCuREn V.

® You can't get utilization above 100%, because
then 1/10 1f a second would have to go into a
second more than ten times.

® This 1s the reason that the throughput curve i1sn't
a straight line to infinity: it always rises with
increasing load, but then levels off at 100% util-
1zation.



Calculating 10055

® We can compute the load that yields 100% util-
1zation
® The user load at 100% utilization

® [scalled N*
® isecqual to 1/S

® We computed 1t by setting S to a tenth of a
second, U to 1 and solving the utilization-law
equation for X.



TThe Throughput

Thoroughpot {35

1n +

| |
10 20

Figure 3. Theoughput, expected and roeasured.

trves Y ?\7

Why doesn't it have
square corners?

Initially requests arrive
independently, and don't
interfere.

As we get closer and
closer to 100% utiliza-
tion, there's more and
more likelihood that two
will be requested at the
same time, and the
second will have to wait.



Queue Buildup

Past 100% utilization, requests have to wait. In

our example, the 11" request has to wait for the
other 10 to complete.

® The queue length 1s computed from
e Little's Law
Q=X.R

® In our example, a load of 50 would yield a
queue length of 50/10 = 5, and the average Re-

sponse time would be (40*%0.1 +0.1) =4.1
seconds



Queue Buildupi o,

® [n the queuing circuit

. |8]_‘_ in Figure 2, the queue
5 is represented by the
] sequence of boxes to
o the left of S.
e St miammmm ® The queue delay or

wait time 1s W, and
the total response
time under load 1s R,
the sum of W and the
service time S.



Queueingand ke ﬁya Tims e

Responst ® Response time 1s the
Tiny second curve in Fig-
' ure 1, which starts
out fairly level and
then rises as we ap-
proach and pass N*.

® The slowdown 1s
N from all the waiting
it In queue.

Figuee 4. Response time, expected and rneasured,



Responserlimeniss

RE%HJ[EE o If WC dld d benCh-
T mark, the response

time would

® start off horizontal, just
like our diagram's 1ni-
tial line

® then start to drift up-
wards fairly quickly
towards paralleling the
second.

Figuee 4. Response time, expected and rneasured,



What'Everyoneido 4r (110 ?\;

® Benchmarkers " -
) know" response time
L6 grows gently and lin-
| carly because their
) benchmark from 0 to
01 10 requests per
) h 2 ” second was relatively
linear.
® They never tried at
20 requests/second!

E.esponse
Tiroe

Figure 5. Bad lineat estiroate of response tire



Consider the two response times that we men-
tioned before, one second and ten.

The proper equation predicts we'll hit the ten
second mark at 107 requests per second.

The bad/linear equation would estimate we
wouldn't hit the ten-second mark until 280 re-
quests per second.

Only the customers (YorkU.CA)will know the
real performance is less than half what they
were promised. They and their lawyers.




What performance is, and why
Measuring performance
Programming for performance
Benchmarking for performance
Tuning for performance




Measuring PEroT

® Many programs use TCP/IP, even locally
® These you can measure with a packet capture
® And there's a free benchmarking tool, Jmeter

® [f it sends requests and receives responses, we

can
® measure the speed
® predict both the curves



A TransacltionllookS

Client Server o
Request
[
t0
®
t ®
|
t
/
ResponsAey

.|| ~
L IKe:

At t0, the request
arrves

At tl, the first byte of
the response 1s sent
At t2, the last byte 1s
sent

And we also record
bytes transferred



We Measure

Client

Request

/
ResponsAey

Server

Latency

=t] —t0
Response Time
=12 —t0
Transfer Time
=12 —tl
Throughput

= bytes/(t2 — tl)
Think Time
=10 - t2




)

Response imeNlCoKSHNEE

® Response time 1s
. latency plus transfer
- time
f | ® This 1s a good
sample, by construc-
tion
1 ® Note the average,
][ | which we'll use in a
moment

6.5 j 5
I
Y TE N |7 T RO Y

5] 1] 16@ 156 2aa 258 288




EEEEEE

BBBBBBB

EEEEEEE

BBBBBBBB
(=]

BBBBBB

Throughput(Byies/s

hhhhhhhhhh

coricl)

® The other kind of
throughput

| ® Used for bulk trans-

fers, like ftp

| ® Variable, but 1t didn't

mess up the response
time



We CanfCompute

® [fand only if we're below 100% and there's no

queue
® We ensured that when we measured 1t
® The load was from wget with a sleep time

® TPS at 100% Utilization

® Computed as 1/ Response Time
® Actual as a % of Maximum
® (Quecue length
e By Little's Law, Q = XR
® And the the Slowdown due to Queuing



Transactions per Second

i M

R e —

P —

® The expected line 1s
1/Dmax, which we
arranged to be equal
to 1/R

® For one CPU, we're
averaging 2.8/4.5
= 62%



S

Queue Length

® This is from one of
[ the Operational laws,
Little's Law, Q=XR
® Waiting 1n queue 1s
g what makes programs
© _ slow

eeeeeeeeeee




™

Working|withithelDa o,

® Throughput (X)

= min(1/Dmax,
N/D+Z7)

Response Time (R)
=max(D,Dmax-7)
Where D 1s demand
N 1s users

Z. 1s think time

Dmax 1s the largest
demand

Load (N)

And D = Sel




TThe ResuitssWen

® A few slow transactions

® We're at about 60% of capacity

® The queue length was about .6, and spiked to
approximately 5.5

e At 7 TPS per CPU, we hit 100% utilization

® At 28 requests/second, R will be 3 seconds, which 1s
not what we want, but sort of ok

® At 150 requests/second, R will be 15-30 seconds,
which is bad



Why 3'a

nd 30 SECOoNESY

® ]/10 second i1s fast
® One second 1s slow

o T

ree seconds 1s the upper bound for slow with a

watch cursor or some other apologetic message
® [f the response time grows to 30 second,
humans think the program 1s more than slow:
they'll think it's crashed!

® 30 seconds happens to be the cache time of human
short-term memory



What performance 1s, and why
Measuring performance
Programming for performance
Benchmarking for performance
Tuning for performance




ProgrammingiorRPERoHiiaiNcE

® Make performance part of your design
® Build the performance test framework firsz.
® For example, the first day the code works...

Dummy User New Dummy DB
N=?7Z=1 Application S=0.1

® (Consider this test-directed performance design



Code andilinetor
“(Good Eneugi:

® [f your target is 1/10 second, set your back end
to almost that (maybe 0.09) , and see 1f the front
end gets in the way

® As soon as it's good enough, STOP. Don't
waste your efforts making a fast part faster

® The maximum TPS will be set by the slowest
part, and will be 1/Dmax

® Where D =S * Visit count

® And visit count 1s number of calls to the slow
part, such as a database or disk



Tuning

® Your tuning in the front end will mostly be
looking at code-path length with your frame-
work and a profiler .

® The “HP” community 1s your resource here
(High Performance as in Cray, not Hewlett-
Packard)

® One reference 1s "Performance Optimization of
Numerically Intensive Codes™ by Stefan Go-
decker (Society for Industrial and Applied
Mathematics)



Then Switch'tortn

® Build a script that submits the SQL and meas-
ure it.

® Now you can tune the queries and the database
structure.

® Sce “Optimizing Oracle Performance” by Cory
Millsap (O'Reilly, 2003)



It you' Haverviddiewan

® Arrange for it to communicate via sockets
® [t probably does anyway

® Measure it's performance the same way
® [fyou can't:

® measure the front end and database

e What's left 1s the middleware



Find out how much CPU, memory and I/O each
transaction takes at 1 TPS

Now test up past 100% utilization, and see
where 1t goes “haywire”

Save that information for properly sizing your
production system

If you under-size a production system, you will
introduce an artificial bottleneck

That's what most “tuners” find and fix (and yes,
that includes me)



What performance 1s, and why
Measuring performance
Programming for performance
Benchmarking for performance
Tuning for performance




BenchmarkingioREeRoNiitneE, ?\7

® [n a TCP/IP world, benchmarking 1s easier

® First, check out JMeter
® And Loadrunner, if you're rich or already have it

® Ifnot, try

wget -O /dev/null -w Z/2 —random-wait
® Run for at least a minute at each load
® Don't just write down the results



Benchmarkingrsug

Response Time (R)

Load (N)

Flica to) “

2

® Graph your results
and look at the
shapes

® Variations from the
expected shapes
identify the bugs

® Also, X >> 1/Dmax,
your load generator's
lying (a common er-
Ior)



What performance 1s, and why
Measuring performance
Programming for performance
Benchmarking for performance
Tuning for performance



® Not cpu speed, or % C
® Then look at latency

Tuning forPeEoHNancE

® The first thing 1s have enough CPUs

PU, the number of CPUs
versus transfer time

® [fremoving either of these will make you fast
enough, then you know where to look next

® [atency 1s sensitive to CPU and network speeds

® But network bandwidt]
® Transfer time i1s banc

h doesn't help here
width-sensitive

® [ ook at disk bandwidt

h first

® Then at code length and code cost
® Then look for resource starvation




Conclusions

® Start early

® Measure R

e Compute X at 100% utilization
® Sce how you're doing

and finally

® Draw the graphs



Graphs as a OorSk

Throughput

-

N W A OO0 O N © © O
o

x““\‘

Transactions
per Second, X

N

L e
101112 1 14 1 1617 1819202122 2 24 2
3 5 3 5

Load, N

N S B B R
012345672829

Response Time

-
o
o

-—
iN
o

-
N
=]

\\“

o
oo
il

o
o

0.4 o

Response Tine, R, (seconds)

© =
ON
NN —
WN
AN A
anN -

v-al ~ r-l
azielspaar

Upper bounds of throughput = min(1/Dmax, N/(D+2))
Lower bounds of response time, R = max(D, N * Dmax — 2)

To compute the throughput and response time curves, we start by
measuring the response time at a very low load, so no queuing happens.
Response time, R, at minimum load = 0.1

We now set the simulated users to issue 1 request per second, which
allows think time, Z, to be 1-R=
This only works if R is less than one second, so that Z is positive.

The maximum throughput will occur at N*, the load where N = 1/R
N* =

After N*, no improvement in throughput will be possible,

and a queue will of work waiting to be processed will build up,

causing the response time to grow without bound.

Our estimate for D and Dmax is initially always 1 * R, so the variables

are now all known. D=
Dmax =
Z=

Throughput N Response Time Queue Length
0 0 0 0.1 0
1 1 1 0.1 0.1
2 2 2 0.1 0.2
3 3 3 0.1 0.3
4 4 4 0.1 0.4
5 5 5 0.1 0.5
6 6 6 0.1 0.6
7 7 7 0.1 0.7
8 8 8 0.1 0.8
9 9 9 0.1 0.9
10 10 10 0.1 1



