

You don't Know Jack aboutYou don't Know Jack about

Application Performance

David Collier-Brown,
Data Center Works

Toronto Linux User Group,
12 Sept 2006

Everyone thinks performance Everyone thinks performance
has to do with resourceshas to do with resources

● Most programmers think if a program runs too
slow, we should throw CPU at it, or memory or
disk...

● But what about program that has all the CPU,
memory and disk in the world, but still stub-
bornly refuses to deliver more than ten transac-
tions per second?

● Should we perhaps find the bottleneck instead?

But it doesn'tBut it doesn't

● Resources are easy to measure, but customers
don't care.

● Customers care about guaranteed low response
times and lots of transactions per second, all at
a low price.

● We need to measure performance first, then
diagnose, and only if we have a resource prob-
lem throw resources at it

● This is the old story of looking under the bright
streetlight for the ring lost in the shadowy
garden.

This talk is aboutThis talk is about

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance

What is Performance?What is Performance?

● Response to a load, in TPS or bytes/second
● Response in reasonable time.

● Latency
● Response time

● What's “reasonable” mean?
● 1/10 second is fast
● One second is not fast
● Ten seconds is bad
● Thirty is very bad

Why don't we measure it?Why don't we measure it?

● It's hard
● Or, optionally, brutally expensive

● Vendors could report it
● They used to in the mainframe days
● But they got screwed when they did

● So we make do with resources
● And often we luck out, when there is a CPU or

memory bottleneck

But things have changedBut things have changed

● Many applications use TCP/IP
● There are lots of packet capture tools to use
● There are also free benchmark tools (JMeter)

The Laws of PerformanceThe Laws of Performance

● You may remember
these diagrams from
a textbook

● The operational laws
dictate the shape of
the throughput and
response time curves

● They're only high-
school algebra, but
they led to queuing
theory

Load (N)

Transactions (X)

Response Time (R)

Load (N)

N*

The Queue (no theory involved)The Queue (no theory involved)

● N users
● N requests/second
● S sec. service time
● W sec. Wait time
● R sec . response time
● D sec .demand
● Z sec. think time

(hidden)
yields
● X

transactions/second

The Throughput CurveThe Throughput Curve

● The first curve is the
upper bound on
throughput (X),

● It rises with load until
the program reaches
100% utilization and
then levels off.

● Measured curves
don't actually have
sharp corners.

The Throughput Curve IIThe Throughput Curve II

● If we measure the
service time, S we
can use the...

● Utilization law,
 U = X . S
 where U = B/T

● Consider the case
where S = 0.10 sec.

The Throughput Curve IIIThe Throughput Curve III

● If S = 0.10, 10 trans-
actions will fit in one
second

● 10 TPS is all we'll get

● If S = 0.05, 20 TPS is
possible

● And 10 TPS is only
50%

The Throughput Curve, IVThe Throughput Curve, IV

● You can't get utilization above 100%, because
then 1/10 if a second would have to go into a
second more than ten times.

● This is the reason that the throughput curve isn't
a straight line to infinity: it always rises with
increasing load, but then levels off at 100% util-
ization.

Calculating 100%Calculating 100%

● We can compute the load that yields 100% util-
ization

● The user load at 100% utilization
● Is called N*
● is equal to 1/S

● We computed it by setting S to a tenth of a
second, U to 1 and solving the utilization-law
equation for X.

The Throughput Curve VThe Throughput Curve V

● Why doesn't it have
square corners?

● Initially requests arrive
independently, and don't
interfere.

● As we get closer and
closer to 100% utiliza-
tion, there's more and
more likelihood that two
will be requested at the
same time, and the
second will have to wait.

Queue BuildupQueue Buildup

● Past 100% utilization, requests have to wait. In
our example, the 11th request has to wait for the
other 10 to complete.

● The queue length is computed from
● Little's Law
 Q = X . R

● In our example, a load of 50 would yield a
queue length of 50/10 = 5, and the average Re-
sponse time would be (40*0.1 + 0.1) = 4.1
seconds

Queue Buildup IIQueue Buildup II

● In the queuing circuit
in Figure 2, the queue
is represented by the
sequence of boxes to
the left of S.

● The queue delay or
wait time is W, and
the total response
time under load is R,
the sum of W and the
service time S.

Queueing and Response TimeQueueing and Response Time

Double-click to add graphics

● Response time is the
second curve in Fig-
ure 1, which starts
out fairly level and
then rises as we ap-
proach and pass N*.

● The slowdown is
from all the waiting
in queue.

Response Time IIResponse Time II

Double-click to add graphics

● If we did a bench-
mark, the response
time would

● start off horizontal, just
like our diagram's ini-
tial line

● then start to drift up-
wards fairly quickly
towards paralleling the
second.

What Everyone Doesn't KnowWhat Everyone Doesn't Know

● Benchmarkers ``-
know'' response time
grows gently and lin-
early because their
benchmark from 0 to
10 requests per
second was relatively
linear.

● They never tried at
20 requests/second!

This is This is A Very Bad ThingA Very Bad Thing

● Consider the two response times that we men-
tioned before, one second and ten.

● The proper equation predicts we'll hit the ten
second mark at 107 requests per second.

● The bad/linear equation would estimate we
wouldn't hit the ten-second mark until 280 re-
quests per second.

● Only the customers (YorkU.CA)will know the
real performance is less than half what they
were promised. They and their lawyers.

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance

Measuring PerformanceMeasuring Performance

● Many programs use TCP/IP, even locally
● These you can measure with a packet capture
● And there's a free benchmarking tool, Jmeter

● If it sends requests and receives responses, we
can

● measure the speed
● predict both the curves

A Transaction Looks Like...A Transaction Looks Like...

● At t0, the request
arrives

● At t1, the first byte of
the response is sent

● At t2, the last byte is
sent

● And we also record
bytes transferred

Client Server

t
0

t
1

t
2

Request

Responses

We MeasureWe Measure

● Latency
= t1 – t0

● Response Time
= t2 – t0

● Transfer Time
= t2 – t1

● Throughput
= bytes/(t2 – t1)

● Think Time
= t0 - t2

Client Server

t
0

t
1

t
2

Request

Responses

Response Time Looks LikeResponse Time Looks Like

● Response time is
latency plus transfer
time

● This is a good
sample, by construc-
tion

● Note the average,
which we'll use in a
moment

Throughput (Bytes/Second)Throughput (Bytes/Second)

● The other kind of
throughput

● Used for bulk trans-
fers, like ftp

● Variable, but it didn't
mess up the response
time

We Can ComputeWe Can Compute

● If and only if we're below 100% and there's no
queue

● We ensured that when we measured it
● The load was from wget with a sleep time

● TPS at 100% Utilization
● Computed as 1/ Response Time

● Actual as a % of Maximum
● Queue length

● By Little's Law, Q = XR
● And the the Slowdown due to Queuing

Transactions per Second (TPS)Transactions per Second (TPS)

● The expected line is
1/Dmax, which we
arranged to be equal
to 1/R

● For one CPU, we're
averaging 2.8/4.5
= 62%

Queue LengthQueue Length

● This is from one of
the Operational laws,
Little's Law, Q=XR

● Waiting in queue is
what makes programs
slow

Working with the DataWorking with the Data

● Throughput (X)
= min(1/Dmax,
N/D+Z)

● Response Time (R)
=max(D,Dmax-Z)

● Where D is demand
● N is users
● Z is think time
● Dmax is the largest

demand
● And D ≈ S•1

Load (N)

Transactions (X)

Response Time (R)

Load (N)

N*

The Results We just SawThe Results We just Saw

● A few slow transactions
● We're at about 60% of capacity
● The queue length was about .6, and spiked to

approximately 5.5
● At 7 TPS per CPU, we hit 100% utilization

● At 28 requests/second, R will be 3 seconds, which is
not what we want, but sort of ok

● At 150 requests/second, R will be 15-30 seconds,
which is bad

Why 3 and 30 Seconds?Why 3 and 30 Seconds?

● 1/10 second is fast
● One second is slow

● Three seconds is the upper bound for slow with a
watch cursor or some other apologetic message

● If the response time grows to 30 second,
humans think the program is more than slow:
they'll think it's crashed!

● 30 seconds happens to be the cache time of human
short-term memory

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance

Programming for PerformanceProgramming for Performance

● Make performance part of your design
● Build the performance test framework first.
● For example, the first day the code works...

● Consider this test-directed performance design

New
Application

Dummy User
N=? Z=1

Dummy DB
S=0.1

Code and Tune for Code and Tune for
“Good Enough”“Good Enough”

● If your target is 1/10 second, set your back end
to almost that (maybe 0.09) , and see if the front
end gets in the way

● As soon as it's good enough, STOP. Don't
waste your efforts making a fast part faster

● The maximum TPS will be set by the slowest
part, and will be 1/Dmax

● Where D = S * Visit count
● And visit count is number of calls to the slow

part, such as a database or disk

TuningTuning

● Your tuning in the front end will mostly be
looking at code-path length with your frame-
work and a profiler .

● The “HP” community is your resource here
(High Performance as in Cray, not Hewlett-
Packard)

● One reference is "Performance Optimization of
Numerically Intensive Codes” by Stefan Go-
decker (Society for Industrial and Applied
Mathematics)

Then Switch to tuning the SQLThen Switch to tuning the SQL

● Build a script that submits the SQL and meas-
ure it.

● Now you can tune the queries and the database
structure.

● See “Optimizing Oracle Performance” by Cory
Millsap (O'Reilly, 2003)

If you Have MiddlewareIf you Have Middleware

● Arrange for it to communicate via sockets
● It probably does anyway

● Measure it's performance the same way
● If you can't:

● measure the front end and database
● What's left is the middleware

And And NowNow Look at Resources Look at Resources

● Find out how much CPU, memory and I/O each
transaction takes at 1 TPS

● Now test up past 100% utilization, and see
where it goes “haywire”

● Save that information for properly sizing your
production system

● If you under-size a production system, you will
introduce an artificial bottleneck

● That's what most “tuners” find and fix (and yes,
that includes me)

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance

Benchmarking for PerformanceBenchmarking for Performance

● In a TCP/IP world, benchmarking is easier
● First, check out JMeter

● And Loadrunner, if you're rich or already have it
● If not, try

wget -O /dev/null -w Z/2 –random-wait
● Run for at least a minute at each load
● Don't just write down the results

Benchmarking Bugs Like to Benchmarking Bugs Like to
HideHide

● Graph your results
and look at the
shapes

● Variations from the
expected shapes
identify the bugs

● Also, X >> 1/Dmax,
your load generator's
lying (a common er-
ror)

Load (N)

Response Time (R)

N*

AgendaAgenda

● What performance is, and why
● Measuring performance
● Programming for performance
● Benchmarking for performance
● Tuning for performance

Tuning for PerformanceTuning for Performance

● The first thing is have enough CPUs
● Not cpu speed, or % CPU, the number of CPUs

● Then look at latency versus transfer time
● If removing either of these will make you fast

enough, then you know where to look next
● Latency is sensitive to CPU and network speeds

● But network bandwidth doesn't help here
● Transfer time is bandwidth-sensitive

● Look at disk bandwidth first
● Then at code length and code cost
● Then look for resource starvation

ConclusionsConclusions

● Start early
● Measure R
● Compute X at 100% utilization
● See how you're doing
and finally
● Draw the graphs

Graphs as a OO SpreadsheetGraphs as a OO Spreadsheet

0 1 2 3 4 5 6 7 8 9 10 11 12 1
3

14 1
5

16 17 18 19 20 21 22 2
3

24 2
5

0

1

2

3

4

5

6

7

8

9

10

Throughput

Load, N

T
ra

n
sa

ct
io

n
s

p
e

r
S

e
co

n
d

,
X

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Response Time

Load, N

R
e

sp
o

n
se

 T
in

e
, R

, (
se

co
n

d
s) N Throughput N Response Time Queue Length

0 0 0 0.1 0
1 1 1 0.1 0.1
2 2 2 0.1 0.2
3 3 3 0.1 0.3
4 4 4 0.1 0.4
5 5 5 0.1 0.5
6 6 6 0.1 0.6
7 7 7 0.1 0.7
8 8 8 0.1 0.8
9 9 9 0.1 0.9

10 10 10 0.1 1

Upper bounds of throughput = min(1/Dmax, N/(D+Z))
Lower bounds of response time, R = max(D, N * Dmax – Z)

To compute the throughput and response time curves, we start by
measuring the response time at a very low load, so no queuing happens.

Response time, R, at minimum load = 0.1

We now set the simulated users to issue 1 request per second, which
allows think time, Z, to be 1 – R = 0.9
This only works if R is less than one second, so that Z is positive.

The maximum throughput will occur at N*, the load where N = 1/R
N* = 10

After N*, no improvement in throughput will be possible,
and a queue will of work waiting to be processed will build up,
causing the response time to grow without bound.

Our estimate for D and Dmax is initially always 1 * R, so the variables
are now all known. D = 0.1

Dmax = 0.1
Z = 0.9

