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Maven,
or Make
for Non-Cooks
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The Original Problem

• cc *.c takes too long
• Why not compile just what's changed?

    theOtherThing: this.o that.o; ln -o
    theOtherThing *.o
    this.o: this.c; cc -c this.c
    that.o: that.c; cc -c that.c
[Stuart Feldman in Software: Practice and 
Experience, V 9, Issue 4, Make, a Program for 
Maintaining Computer Programs]
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 Third line is the Recipe

• You can add lots of lines of recipe
    that.o: that.c; 
         lint that.c && \
         cc -c that.c

• And you can add  targets for common 
recipes
 clean:; rm *.o
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But It's Still Hard

• You have to write all those dependency 
lines
• The linker knows some of the information

> theOtherThing: this.o that.o

• The c compiler knows all the .h files
> this.o: this.c stdio.h

• So have them write the non-recipe lines
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The Next Problem: Repetition

• Two pairs of near-identical recipes in this 
simple example
• So we added macros

> FOO=/usr/local/obscure
> @echo “Install in ${FOO}”

• And rules
> %.o: %.c; cc -o $<

• And more rules
> Etc, etc, ite ad nauseam
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Any Fool can write Makefiles

• And many do.
> No standardization
> Lots of make dialects

• Conventional targets
> all, clean, install,test

• Lots of standards, all different
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XKCD Says...
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So Start Again From Scratch 

• QEF, with one common notation
• And other, less-well-known approaches

> But mostly they reinvented square wheels

• Ant, try writing everything in XML
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Apache Ant

• Ant was still annoying
> No standard build targets
> Every antfile contained another re-invented 

wheel
> It was xml, but mostly imperative
> And it was xml

• Couldn't we get simpler?
> Or, if it was a wheel, rounder?
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Apache Maven

• Grew out of dissatisfaction with Ant
> Simplify and streamline a mongo antfile, from 

Apache Turbine

• Ant provided primitives like “mkdir” and 
“copy”
• Maven provided “compile” and “install”

> Bootstrapped with ant, jelly xml

• M2 Upgraded to clean it up some more
> Java, and XML as a declarative language



11
GTALUG, December 2014

No Recipes

• Write plugins to do common operations 
> install jar
> install war
> Create project
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A Standard Set of Targets

• By default, anyway:
> Clean
> Compile
> Test
> Install

• “mvn clean install”
> Does just what you expect
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Common infrastructure

• If you say plugin:download -D... gnurrs, it 
will
> Download the “gurrs” extension
> Install it in your environment

• Most common steps already written
• For example, install a project into Eclipse
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Plugins: gee, looks like everything else

<plugin>
    <groupId>
        org.apache.maven.plugins</groupId>
    <artifactId>
        maven-eclipse-plugin</artifactId>
    <version>2.9</version>
    <configuration> ...
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Easy things should be easy

• All sorts of common operations are already 
written
• The almost all work
• But when they don't...
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Hard things should be at least possible

• Just try debugging install under eclipse on 
Linux
• You'd better know Maven, Eclipse and 

Linux
• Or google a lot
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The good part

• Everything is a dependency
• It's really make, recursively self-applied
• The O'Reilly book teaches you to make and 

debug plugins
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Using MVN

• Mvn phase
• Mvn specific:command

•
• They say “convention”
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Three main variables

• Group id, maven-plugins
• artifact id, maven-axis-plugin
• Version, 0.7

> or

• Version, 0.7-SNAPSHOT
> Means latest version of 0.7

• Maps to paths, eg
> maven-plugins/plugins/maven-axis-

plugin.0.7.jar
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Three main variables, ctd

<project ...> ...
    <groupId>com.skilledgaming</groupId>
    <artifactId>platform</artifactId>
    <packaging>war</packaging>
    <version>1.0-SNAPSHOT</version>
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For example

• Add an actual plugin
> Mvn plugin:download -DgroupId=maven-

plugins -DartifactId=maven-axis-plugin 
-Dversion=0.7

> Will download a plugin used to in turn 
download NOAA data, used in a weather-map 
coding example (U.S. National Oceanic and 
Aeronautic Administration)
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Repositories for all the bits

• If we had declared a dependency on axis, 
maven would download it itself

 <dependency>
            <groupId>axis</groupId>
            <artifactId>axis</artifactId>
            <version>1.2.1</version> ...
• Covers annoying long lists of dependencies 

in build and test tools
• Huge time-saver
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Repository declarations

• The installer created several
 <repository>
     <id>central</id>
          <url>
http://artifactory.virgin/artifactory/repo
          </url>
          <snapshots>
                <enabled>false</enabled>
          ...

http://artifactory.virgin/artifactory/repo
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Multi-project builds

• Each project produces one artifact 
(deliverable)
> The can have dependencies between them
> They can depend on external binaries

• A collection of projects is a collection  of 
dependencies, like make, but with most of 
the recipes taken out



25
GTALUG, December 2014

Multi-project builds, ctd

• Can include continuous integration systems
• And revision control targets
• Ditto remote repositories, using snapshots
• Also used for  building plugins
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Multi-project builds, ctd

• Even this one has some substructure
    <dependency>
        <groupId>
            com.skilledgaming.platform
        </groupId>
        <artifactId>jskills</artifactId>
        <version>1.0</version>
    </dependency>
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In Practice

• Build a web app
• Back end uses NOAA data
• Delivered as a jar or war
• All the components used to build and install 

are dependencies
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Conclusions?

• Make with standards
• and compiled recipes
• Scales via recursing on dependencies

• Easy to use, hard to learn
> A traditional tradeoff

• As the English would say, 
“Not half bad”
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