
1
GTALUG, December 2014

Maven,
or Make
for Non-Cooks

David Collier-Brown

2
GTALUG, December 2014

The Original Problem

• cc *.c takes too long
• Why not compile just what's changed?

 theOtherThing: this.o that.o; ln -o
 theOtherThing *.o
 this.o: this.c; cc -c this.c
 that.o: that.c; cc -c that.c
[Stuart Feldman in Software: Practice and
Experience, V 9, Issue 4, Make, a Program for
Maintaining Computer Programs]

3
GTALUG, December 2014

 Third line is the Recipe

• You can add lots of lines of recipe
 that.o: that.c;
 lint that.c && \
 cc -c that.c

• And you can add targets for common
recipes
 clean:; rm *.o

4
GTALUG, December 2014

But It's Still Hard

• You have to write all those dependency
lines
• The linker knows some of the information

> theOtherThing: this.o that.o

• The c compiler knows all the .h files
> this.o: this.c stdio.h

• So have them write the non-recipe lines

5
GTALUG, December 2014

The Next Problem: Repetition

• Two pairs of near-identical recipes in this
simple example
• So we added macros

> FOO=/usr/local/obscure
> @echo “Install in ${FOO}”

• And rules
> %.o: %.c; cc -o $<

• And more rules
> Etc, etc, ite ad nauseam

6
GTALUG, December 2014

Any Fool can write Makefiles

• And many do.
> No standardization
> Lots of make dialects

• Conventional targets
> all, clean, install,test

• Lots of standards, all different

7
GTALUG, December 2014

XKCD Says...

8
GTALUG, December 2014

So Start Again From Scratch

• QEF, with one common notation
• And other, less-well-known approaches

> But mostly they reinvented square wheels

• Ant, try writing everything in XML

9
GTALUG, December 2014

Apache Ant

• Ant was still annoying
> No standard build targets
> Every antfile contained another re-invented

wheel
> It was xml, but mostly imperative
> And it was xml

• Couldn't we get simpler?
> Or, if it was a wheel, rounder?

10
GTALUG, December 2014

Apache Maven

• Grew out of dissatisfaction with Ant
> Simplify and streamline a mongo antfile, from

Apache Turbine

• Ant provided primitives like “mkdir” and
“copy”
• Maven provided “compile” and “install”

> Bootstrapped with ant, jelly xml

• M2 Upgraded to clean it up some more
> Java, and XML as a declarative language

11
GTALUG, December 2014

No Recipes

• Write plugins to do common operations
> install jar
> install war
> Create project

12
GTALUG, December 2014

A Standard Set of Targets

• By default, anyway:
> Clean
> Compile
> Test
> Install

• “mvn clean install”
> Does just what you expect

13
GTALUG, December 2014

Common infrastructure

• If you say plugin:download -D... gnurrs, it
will
> Download the “gurrs” extension
> Install it in your environment

• Most common steps already written
• For example, install a project into Eclipse

14
GTALUG, December 2014

Plugins: gee, looks like everything else

<plugin>
 <groupId>
 org.apache.maven.plugins</groupId>
 <artifactId>
 maven-eclipse-plugin</artifactId>
 <version>2.9</version>
 <configuration> ...

15
GTALUG, December 2014

Easy things should be easy

• All sorts of common operations are already
written
• The almost all work
• But when they don't...

16
GTALUG, December 2014

Hard things should be at least possible

• Just try debugging install under eclipse on
Linux
• You'd better know Maven, Eclipse and

Linux
• Or google a lot

17
GTALUG, December 2014

The good part

• Everything is a dependency
• It's really make, recursively self-applied
• The O'Reilly book teaches you to make and

debug plugins

18
GTALUG, December 2014

Using MVN

• Mvn phase
• Mvn specific:command

•
• They say “convention”

19
GTALUG, December 2014

Three main variables

• Group id, maven-plugins
• artifact id, maven-axis-plugin
• Version, 0.7

> or

• Version, 0.7-SNAPSHOT
> Means latest version of 0.7

• Maps to paths, eg
> maven-plugins/plugins/maven-axis-

plugin.0.7.jar

20
GTALUG, December 2014

Three main variables, ctd

<project ...> ...
 <groupId>com.skilledgaming</groupId>
 <artifactId>platform</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>

21
GTALUG, December 2014

For example

• Add an actual plugin
> Mvn plugin:download -DgroupId=maven-

plugins -DartifactId=maven-axis-plugin
-Dversion=0.7

> Will download a plugin used to in turn
download NOAA data, used in a weather-map
coding example (U.S. National Oceanic and
Aeronautic Administration)

22
GTALUG, December 2014

Repositories for all the bits

• If we had declared a dependency on axis,
maven would download it itself

 <dependency>
 <groupId>axis</groupId>
 <artifactId>axis</artifactId>
 <version>1.2.1</version> ...
• Covers annoying long lists of dependencies

in build and test tools
• Huge time-saver

23
GTALUG, December 2014

Repository declarations

• The installer created several
 <repository>
 <id>central</id>
 <url>
http://artifactory.virgin/artifactory/repo
 </url>
 <snapshots>
 <enabled>false</enabled>
 ...

http://artifactory.virgin/artifactory/repo

24
GTALUG, December 2014

Multi-project builds

• Each project produces one artifact
(deliverable)
> The can have dependencies between them
> They can depend on external binaries

• A collection of projects is a collection of
dependencies, like make, but with most of
the recipes taken out

25
GTALUG, December 2014

Multi-project builds, ctd

• Can include continuous integration systems
• And revision control targets
• Ditto remote repositories, using snapshots
• Also used for building plugins

26
GTALUG, December 2014

Multi-project builds, ctd

• Even this one has some substructure
 <dependency>
 <groupId>
 com.skilledgaming.platform
 </groupId>
 <artifactId>jskills</artifactId>
 <version>1.0</version>
 </dependency>

27
GTALUG, December 2014

In Practice

• Build a web app
• Back end uses NOAA data
• Delivered as a jar or war
• All the components used to build and install

are dependencies

28
GTALUG, December 2014

Conclusions?

• Make with standards
• and compiled recipes
• Scales via recursing on dependencies

• Easy to use, hard to learn
> A traditional tradeoff

• As the English would say,
“Not half bad”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

