
1
GTALUG, January 2018

Play it Again, Sam – record and replay tools for
load testing

David Collier-Brown
• davecb@spamcop.net

2
GTALUG, January 2018

“Play it Again, Sam”

• The real quote is
 Ilsa: "Play it once, Sam, for old times' sake."

 Rick: “Play it"

3
GTALUG, January 2018

The Old Way

• Invent a synthetic test
• Buy H-P LoadRunner licenses
• Get misleading answers

> The H-P product is evil
> And inventing the truth isn’t a good plan

• Switch to Jmeter
• Which is free and good

> But keep trying to invent a valid test load ...

4
GTALUG, January 2018

The Samba Team did it Better

• They carefully created a load script from a
debug=10 log
• Laboriously!

> And just once...

5
GTALUG, January 2018

But it’s way easier now

• Everything uses REST
> And Apache, and Nginx, and so on

• They log one line per request-response pair
• So capture those and replay at 1x, 2x, 10x

6
GTALUG, January 2018

Nginx example
• Same format as Apache (standardized)

10.76.2.1 - - [28/Nov/2017:06:55:04 -0500]
"GET /81eae740-a93a-467c-90d5-
c555db9dc8a7 HTTP/1.1" 200 3994 "-"
"Dalvik/1.6.0 (Linux; U; Android 4.4.4;
Nexus 7 Build/KTU84P)"
• And as a stretch goal, can also log the

$request_time

7
GTALUG, January 2018

I reformat it with awk to this

#date time latency xferTime think bytes url rc op

2017-Nov-28 06:54:52 0 0 0 12578 /81eae740-a93a-
467c-90d5-c555db9dc8a7 200 GET

• That’s identical to my output format
> An output can be used as an input for reruns
> Or compared for improvement/degradation

8
GTALUG, January 2018

And it looks like this in use

$ runLoadTest --rest --tps 80 --for 80 \
 log.csv http://10.92.10.201:80 |\
tee raw.csv
#yyy-mm-dd hh:mm:ss latency xfertime
thinktime bytes url rc op
2017-11-10 01:20:03.170 0.049963 0.000045
0 100 fc9b8674-3c3f-459a-a597-
bf4b1cc8ec00 200 GET

http://10.92.10.201:80/

9
GTALUG, January 2018

Code:

• This is a much simpler version of a
convoluted C program

10
GTALUG, January 2018

The implementation is pipe-oriented

• Write input to pipe
• Start consumers, 10 more every 10 seconds
• Consumers send a GET, time it and mostly

just discard whatever comes back

11
GTALUG, January 2018

Main loop
go workSelector(f, filename, fromTime, forTime, pipe) // which pipes to ...

go generateLoad(pipe, tpsTarget, progressRate, startTps, baseURL) // .. alive

for {

 select {

 case <-alive:

 processed++

 case <-time.After(time.Second * conf.Timeout):

 log.Printf("%d records processed\n", processed)

 log.Printf("No activity after %d seconds, halting normally.\n",

 conf.Timeout)

 return

 }
}

This is called “building a pipeline that ends
here” (see also leafless.ca)

12
GTALUG, January 2018

Increasing load
// add to the workers until we have enough
log.Printf("now at %d requests/second\n", rate)
for range time.Tick(time.Duration(conf.StepDuration) * time.Second) {

//start another progressRate of workers
rate += progressRate
if rate > tpsTarget {

// OK, we're past the range, quit.
log.Printf("completed maximum rate, starting %d sec cleanup\n",

 conf.Timeout)
break

}
for i := 0; i < progressRate; i++ {

go worker(pipe)
}
log.Printf("now at %d requests/second\n", rate)

}
// let them run for a cycle and shut down
time.Sleep(time.Duration(10 * float64(time.Second)))
close(closed) // We're done

13
GTALUG, January 2018

Workers
func worker(pipe chan []string) {

var r []string

if conf.Debug {
log.Print("started a worker\n")

}
// wait a random fraction of one second before looping, for randomness.
time.Sleep(time.Duration(random.Float64() * float64(time.Second)))

for range time.Tick(1 * time.Second) { // nolint
select {
case <-closed:

if conf.Debug {
log.Print("pipe closed, no more requests to process.\n")

}
return

case r = <-pipe:
//log.Printf("got %v\n", r)

 go op.Get(r[pathField], r[returnCodeField])

 }
}

}

14
GTALUG, January 2018

How to use the program

• Debug the system under test
• Debug your date
• Do some sanity checks, then
• Run an increasing-load test until the target

system falls over

15
GTALUG, January 2018

First, debug the victim

• loadGenerator -v --rest --tps 1 --for 1
./samples.csv http://localhost:5280
• This is super verbose
• If the return is not a 2XX, it prints the body

16
GTALUG, January 2018

A bad connection

#yyy-mm-dd hh:mm:ss latency xfertime thinktime bytes url rc op

2018-01-06 16:43:59.654 0.000895 0.000000 0 0 /15b00a26-9ba3-4649-8477-c48bcab90dc7 444 GET expected=200

2018/01/06 16:43:59 restOps.go:197: error getting http response, Get http://localhost:5280///15b00a26-9ba3-4649-8477-c48bcab90dc7: dial tcp 127.0.0.1:5280:

 getsockopt: connection refused

Request:

GET ///15b00a26-9ba3-4649-8477-c48bcab90dc7 HTTP/1.1

Host: localhost:5280

User-Agent: Go-http-client/1.1

Cache-Control: no-cache

Accept-Encoding: gzip

Response: <nil>

Body: <nil>

2017/12/04 19:46:33 runLoadTest.go:115: No activity after 35 seconds, halting normally.

17
GTALUG, January 2018

A success
#yyy-mm-dd hh:mm:ss latency xfertime thinktime bytes url rc
2017/11/11 21:11:20 runLoadTest.go:194: starting, at 1 requests/second
2017/11/11 21:11:20 runLoadTest.go:137: Loaded 1 records, closing input
2017/11/11 21:11:22 restOps.go:189:
Request:
GET /zaphod-beebelbrox.jpg HTTP/1.1
Host: calvin
User-Agent: Go-http-client/1.1
Cache-Control: no-cache
Accept-Encoding: gzip

Response headers:
 Length: 122944
 Status code: 200 È OK
 Last-Modified : [Fri, 11 Aug 2017 13:59:57 GMT]
 Accept-Ranges : [bytes]
 Server : [nginx/1.10.3 (Ubuntu)]
 Content-Type : [image/jpeg]
 Content-Length : [12530]
 Date : [Sun, 12 Nov 2017 02:11:47 GMT]
 Connection : [keep-alive]
 Etag : ["598db85d-30f2"]
Response contents:
HTTP/1.1 200 OK
Content-Length: 122944
Accept-Ranges: bytes
Connection: keep-alive
Content-Type: image/jpeg
Date: Sun, 12 Nov 2017 02:11:47 GMT
Etag: "598db85d-30f2"
Last-Modified: Fri, 11 Aug 2017 13:59:57 GMT
Server: nginx/1.10.3 (Ubuntu)

Body:
 ' OJ cDe * 7;������ ����� �� �

```
followed by many lines of gibberish from viewing a gif as text.



18
GTALUG, January 2018

Then run from end to end

• Instead of `--for 1`, we run through the 
whole file at some convenient speed. 
• If the system is expected to handle 100 

request/second (TPS), try running at `--tps 
100 --crash`, and see if you can get a clean 
run from beginning to end.
• Any error will put the verbose switch on, 

and --crash will stop on error



19
GTALUG, January 2018

Then you can try a load test

• Once you have a test that will run from end 
to end at a moderate load,try a test with a 
load varying from small to perhaps ten time 
the maximum
• 10x so you find the point at which the 

response time curve turns upwards in the 
classic hockey-stick, "_/".



20
GTALUG, January 2018

Demo:

• Run a smoke-test
• Then the increasing-load test
• Look at the raw data
• Then convert it to one-second samples
• And plot response time against increasing 

load to get a “_/” graph
• Finally, look at the low-load region you’re 

actually going to use
> Unless, of course, there is no such region (;-))



21
GTALUG, January 2018

Then the increasing-load test

• The data looks like this…
#yyy-mm-dd hh:mm:ss latency xfertime thinktimebytes url rc op

2017-12-10 16:39:08.511 0.002729 0.000288 0 12530 /15b00a26-
9ba3-4649-8477-c48bcab90dc7 200 GET

2017-12-10 16:39:08.533 0.000648 0.000323 0 178 /8318b57f-c1fa-
4587-8dbd-2b78cee5d20b 404 GET

• Just a sequence of boring lines, right?



22
GTALUG, January 2018

But if you graph it

• You can see signs of the hockey-stick



23
GTALUG, January 2018

If you convert into one-second samples

• You can also see the request rate (TPS)
#date time latency xfertime thinktime bytes transactions

2017-12-10 16:08:51 0.001429 0.002411 0 175108 8

2017-12-10 16:08:52 0.001542 0.002063 0 210979 9

2017-12-10 16:08:53 0.001012 0.000515 0 54809 9

2017-12-10 16:08:54 0.001011 0.000862 0 77291 9

2017-12-10 16:08:55 0.00104 0.004892 0 439226 9

2017-12-10 16:08:56 0.00111 0.001067 0 114574 9

2017-12-10 16:08:57 0.001122 0.006129 0 629454 9

2017-12-10 16:08:58 0.001019 0.000302 0 27544 9

2017-12-10 16:08:59 0.00097 0.000919 0 90388 9

2017-12-10 16:09:00 0.001177 0.001893 0 123507 9

2017-12-10 16:09:01 0.000984 0.000335 0 39037 19

2017-12-10 16:09:02 0.000918 0.001949 0 219558 17

2017-12-10 16:09:03 0.00098 0.002238 0 269115 19

2017-12-10 16:09:04 0.001097 0.003237 0 384714 19



24
GTALUG, January 2018

Graphed, you start to see more ...

• Transaction rate rises steadily



25
GTALUG, January 2018

Response times spike



26
GTALUG, January 2018

Plot as a scattergram

• The latency greatly increases after 250 
requests per second. 



27
GTALUG, January 2018

Low-load detail

• Below that it gently increases, from a quite 
pleasant 0.4s at 40 requests/second to an 
ugly 1.25 seconds at 120.



28
GTALUG, January 2018

Draw conclusions

• Down in the low range we expect, it’s linear 
and pretty quick
• At “normal overload” it’s ordinarily slow
• At > 250 TPS, it finally hits the wall

• If I want to build a ceph array of those 
disks, that’s the information I need.
• Ditto if it were any other server.



29
GTALUG, January 2018

Apply this to your problems

• It’s pretty much always not the speed of am 
individual device, but instead the number of 
devices.
• Apply a real production load to a test server, 

then crank it up.
• Then scale horizontally

[Note that doesn’t work if your problem 
only scales vertically, like a relational DB]



30
GTALUG, January 2018

What else to use a load generator for?

• Profiling – 
> Where does the program spend it’s time when 

it’s actually doing a production load?
> That’s not the same as while doing unit tests!

• Code coverage –
> What part of the code is unreachable by 

paying customers?
> Why are we paying for unused stuff?



31
GTALUG, January 2018

What else...

• Debugging –
> I find LOTS of stuff 
> And you probably can use it for fuzz testing 

by creating data with /dev/random (;-))

• Pre-production – 
> Feed a copy of the production load by doing a 

tail -f on the production logs and feeding that 
to the generator

• Pre-migration/pre-caching – 
> In one case where we did lazy fetching from 

another service, replaying prod pre-loaded us



32
GTALUG, January 2018

Links

• Gitub repo
> https://github.com/davecb/Play-it-Again-Sam

• Tutorials
> https://github.com/davecb/Play-it-Again-Sa

m/blob/master/Running_Record-Reply_Tests.m
d

> https://leaflessca.wordpress.com/2017/11/12/p
lay-it-again-sam-a-load-testing-tool/

• Man Page
> https://github.com/davecb/Play-it-Again-

Sam/blob/master/cmd/runLoadTest/runLoadT
est.md

https://github.com/davecb/Play-it-Again-Sam
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

