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Play it Again, Sam – record and replay tools for 
load testing

David Collier-Brown
• davecb@spamcop.net
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“Play it Again, Sam”

• The real quote is 
     Ilsa: "Play it once, Sam, for old times' sake." 

      Rick: “Play it"
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The Old Way

• Invent a synthetic test
• Buy H-P LoadRunner licenses
• Get misleading answers

> The H-P product is evil
> And inventing the truth isn’t a good plan

• Switch to Jmeter
• Which is free and good

> But keep trying to invent  a valid test load ...
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The Samba Team did it Better

• They carefully created a load script from a 
debug=10 log
• Laboriously!

> And just once...
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But it’s way easier now

• Everything uses REST
> And Apache, and Nginx, and so on

• They log one line per request-response pair
• So capture those and replay at 1x, 2x, 10x
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Nginx example
• Same format as Apache (standardized) 

10.76.2.1 - - [28/Nov/2017:06:55:04 -0500] 
"GET /81eae740-a93a-467c-90d5-
c555db9dc8a7 HTTP/1.1" 200 3994 "-" 
"Dalvik/1.6.0 (Linux; U; Android 4.4.4; 
Nexus 7 Build/KTU84P)"
• And as a stretch goal, can also log the 

$request_time
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I reformat it with awk to this

#date time latency xferTime think bytes url rc op

2017-Nov-28 06:54:52 0 0 0 12578 /81eae740-a93a-
467c-90d5-c555db9dc8a7 200 GET

• That’s identical to my output format
> An output can be used as an input for reruns
> Or compared for improvement/degradation
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And it looks like this in use

$ runLoadTest --rest --tps 80 --for 80 \
  log.csv http://10.92.10.201:80  |\
tee raw.csv
#yyy-mm-dd hh:mm:ss latency xfertime 
thinktime bytes url rc op
2017-11-10 01:20:03.170 0.049963 0.000045 
0 100 fc9b8674-3c3f-459a-a597-
bf4b1cc8ec00 200 GET

http://10.92.10.201:80/
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Code:

• This is a much simpler version of a 
convoluted C program
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The implementation is pipe-oriented

• Write input to pipe
• Start consumers, 10 more every 10 seconds
• Consumers send a GET, time it and mostly 

just discard whatever comes back
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Main loop
go workSelector(f, filename, fromTime, forTime, pipe)       // which pipes to ...

go generateLoad(pipe, tpsTarget, progressRate, startTps, baseURL) // .. alive

for {

        select {

        case <-alive:

                processed++

        case <-time.After(time.Second * conf.Timeout):

                log.Printf("%d records processed\n", processed)

                log.Printf("No activity after %d seconds, halting normally.\n",

                        conf.Timeout)

                return

        }
}

This is called “building a pipeline that ends 
here” (see also leafless.ca)
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Increasing load
// add to the workers until we have enough
log.Printf("now at %d requests/second\n", rate)
for range time.Tick(time.Duration(conf.StepDuration) * time.Second) { 

//start another progressRate of workers
rate += progressRate
if rate > tpsTarget {

// OK, we're past the range, quit.
log.Printf("completed maximum rate, starting %d sec cleanup\n",     

                  conf.Timeout)
break

}
for i := 0; i < progressRate; i++ {

go worker(pipe)
}
log.Printf("now at %d requests/second\n", rate)

}
// let them run for a cycle and shut down
time.Sleep(time.Duration(10 * float64(time.Second)))
close(closed) // We're done
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Workers
func worker(pipe chan []string) {

var r []string

if conf.Debug {
log.Print("started a worker\n")

}
// wait a random fraction of one second before looping, for randomness.
time.Sleep(time.Duration(random.Float64() * float64(time.Second)))

for range time.Tick(1 * time.Second) { // nolint
select {
case <-closed:

if conf.Debug {
log.Print("pipe closed, no more requests to process.\n")

}
return 

case r = <-pipe:
//log.Printf("got %v\n", r)

      go op.Get(r[pathField], r[returnCodeField])

           }
}

}
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How to use the program

• Debug the system under test
• Debug your date
• Do some sanity checks, then
• Run an increasing-load test until the target 

system falls over
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First, debug the victim

•  loadGenerator -v --rest --tps 1 --for 1 
./samples.csv http://localhost:5280
• This is super verbose
• If the return is not a 2XX, it prints the body
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A bad connection

#yyy-mm-dd hh:mm:ss latency xfertime thinktime bytes url rc op

2018-01-06 16:43:59.654 0.000895 0.000000 0 0 /15b00a26-9ba3-4649-8477-c48bcab90dc7 444 GET expected=200

2018/01/06 16:43:59 restOps.go:197: error getting http response, Get http://localhost:5280///15b00a26-9ba3-4649-8477-c48bcab90dc7: dial tcp 127.0.0.1:5280: 

    getsockopt: connection refused

Request: 

GET ///15b00a26-9ba3-4649-8477-c48bcab90dc7 HTTP/1.1

Host: localhost:5280

User-Agent: Go-http-client/1.1

Cache-Control: no-cache

Accept-Encoding: gzip

Response: <nil>

Body: <nil>

2017/12/04 19:46:33 runLoadTest.go:115: No activity after 35 seconds, halting normally.
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A success
#yyy-mm-dd hh:mm:ss latency xfertime thinktime bytes url rc
2017/11/11 21:11:20 runLoadTest.go:194: starting, at 1 requests/second
2017/11/11 21:11:20 runLoadTest.go:137: Loaded 1 records, closing input
2017/11/11 21:11:22 restOps.go:189: 
Request: 
GET /zaphod-beebelbrox.jpg HTTP/1.1
Host: calvin
User-Agent: Go-http-client/1.1
Cache-Control: no-cache
Accept-Encoding: gzip

Response headers:
    Length: 122944
    Status code: 200 È OK
    Last-Modified : [Fri, 11 Aug 2017 13:59:57 GMT]
    Accept-Ranges : [bytes]
    Server : [nginx/1.10.3 (Ubuntu)]
    Content-Type : [image/jpeg]
    Content-Length : [12530]
    Date : [Sun, 12 Nov 2017 02:11:47 GMT]
    Connection : [keep-alive]
    Etag : ["598db85d-30f2"]
Response contents: 
HTTP/1.1 200 OK
Content-Length: 122944
Accept-Ranges: bytes
Connection: keep-alive
Content-Type: image/jpeg
Date: Sun, 12 Nov 2017 02:11:47 GMT
Etag: "598db85d-30f2"
Last-Modified: Fri, 11 Aug 2017 13:59:57 GMT
Server: nginx/1.10.3 (Ubuntu)

Body:
 ' OJ cDe * 7;������ ����� �� �

```
followed by many lines of gibberish from viewing a gif as text.
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Then run from end to end

• Instead of `--for 1`, we run through the 
whole file at some convenient speed. 
• If the system is expected to handle 100 

request/second (TPS), try running at `--tps 
100 --crash`, and see if you can get a clean 
run from beginning to end.
• Any error will put the verbose switch on, 

and --crash will stop on error
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Then you can try a load test

• Once you have a test that will run from end 
to end at a moderate load,try a test with a 
load varying from small to perhaps ten time 
the maximum
• 10x so you find the point at which the 

response time curve turns upwards in the 
classic hockey-stick, "_/".
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Demo:

• Run a smoke-test
• Then the increasing-load test
• Look at the raw data
• Then convert it to one-second samples
• And plot response time against increasing 

load to get a “_/” graph
• Finally, look at the low-load region you’re 

actually going to use
> Unless, of course, there is no such region (;-))
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Then the increasing-load test

• The data looks like this…
#yyy-mm-dd hh:mm:ss latency xfertime thinktimebytes url rc op

2017-12-10 16:39:08.511 0.002729 0.000288 0 12530 /15b00a26-
9ba3-4649-8477-c48bcab90dc7 200 GET

2017-12-10 16:39:08.533 0.000648 0.000323 0 178 /8318b57f-c1fa-
4587-8dbd-2b78cee5d20b 404 GET

• Just a sequence of boring lines, right?
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But if you graph it

• You can see signs of the hockey-stick
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If you convert into one-second samples

• You can also see the request rate (TPS)
#date time latency xfertime thinktime bytes transactions

2017-12-10 16:08:51 0.001429 0.002411 0 175108 8

2017-12-10 16:08:52 0.001542 0.002063 0 210979 9

2017-12-10 16:08:53 0.001012 0.000515 0 54809 9

2017-12-10 16:08:54 0.001011 0.000862 0 77291 9

2017-12-10 16:08:55 0.00104 0.004892 0 439226 9

2017-12-10 16:08:56 0.00111 0.001067 0 114574 9

2017-12-10 16:08:57 0.001122 0.006129 0 629454 9

2017-12-10 16:08:58 0.001019 0.000302 0 27544 9

2017-12-10 16:08:59 0.00097 0.000919 0 90388 9

2017-12-10 16:09:00 0.001177 0.001893 0 123507 9

2017-12-10 16:09:01 0.000984 0.000335 0 39037 19

2017-12-10 16:09:02 0.000918 0.001949 0 219558 17

2017-12-10 16:09:03 0.00098 0.002238 0 269115 19

2017-12-10 16:09:04 0.001097 0.003237 0 384714 19
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Graphed, you start to see more ...

• Transaction rate rises steadily
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Response times spike
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Plot as a scattergram

• The latency greatly increases after 250 
requests per second. 
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Low-load detail

• Below that it gently increases, from a quite 
pleasant 0.4s at 40 requests/second to an 
ugly 1.25 seconds at 120.
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Draw conclusions

• Down in the low range we expect, it’s linear 
and pretty quick
• At “normal overload” it’s ordinarily slow
• At > 250 TPS, it finally hits the wall

• If I want to build a ceph array of those 
disks, that’s the information I need.
• Ditto if it were any other server.
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Apply this to your problems

• It’s pretty much always not the speed of am 
individual device, but instead the number of 
devices.
• Apply a real production load to a test server, 

then crank it up.
• Then scale horizontally

[Note that doesn’t work if your problem 
only scales vertically, like a relational DB]
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What else to use a load generator for?

• Profiling – 
> Where does the program spend it’s time when 

it’s actually doing a production load?
> That’s not the same as while doing unit tests!

• Code coverage –
> What part of the code is unreachable by 

paying customers?
> Why are we paying for unused stuff?
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What else...

• Debugging –
> I find LOTS of stuff 
> And you probably can use it for fuzz testing 

by creating data with /dev/random (;-))

• Pre-production – 
> Feed a copy of the production load by doing a 

tail -f on the production logs and feeding that 
to the generator

• Pre-migration/pre-caching – 
> In one case where we did lazy fetching from 

another service, replaying prod pre-loaded us
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Links

• Gitub repo
> https://github.com/davecb/Play-it-Again-Sam

• Tutorials
> https://github.com/davecb/Play-it-Again-Sa

m/blob/master/Running_Record-Reply_Tests.m
d

> https://leaflessca.wordpress.com/2017/11/12/p
lay-it-again-sam-a-load-testing-tool/

• Man Page
> https://github.com/davecb/Play-it-Again-

Sam/blob/master/cmd/runLoadTest/runLoadT
est.md

https://github.com/davecb/Play-it-Again-Sam
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md
https://github.com/davecb/Play-it-Again-Sam/blob/master/Running_Record-Reply_Tests.md
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